Development of CAD System Based on Enhanced Clustering Based Segmentation Algorithm for Detection of Masses in Breast DCE-MRI
نویسندگان
چکیده
Breast cancer continues to be a significant public health problem in the world. Early detection is the key for improving breast cancer prognosis. Mammography is currently the primary method of early detection. But recent research has shown that many cases missed by mammography can be detected in Breast DCE-MRI. Magnetic Resonance (MR) imaging is emerging as the most sensitive modality that is currently available for the detection of primary or recurrent breast cancer. Breast DCE-MRI is more effective than mammography, because it generates much more data. Magnetic resonance imaging (MRI) is emerging as a powerful tool for the diagnosis of breast abnormalities. Computer Aided Detection (CAD) is of great help to this situation and image segmentation is most important process of computer Aided Detection, Magnetic Resonance Imaging data are a major challenge to any image processing software because of the huge amount of image voxels. Automatic approaches to breast cancer detection can help radiologists in this hard task and speed up the inspection process. To segment the mass of the breast region from 3D MRI set, a multistage image processing procedure was proposed. Data acquisition, processing and visualization techniques facilitate diagnosis. Image segmentation is an established necessity for an improved analysis of Magnetic Resonance (MR) images. Segmentation from MR images may aid in tumor treatment by tracking the progress of tumor growth and shrinkage. The advantages of Magnetic Resonance Imaging are that the spatial resolution is high and provides detailed images. The tumor segmentation in Breast MRI image is difficult due to the complicated galactophore structure. The work in this paper attempts to accurately segment the abnormal breast mass in DCEMRI Images. The mass is segmented using a novel clustering algorithm based on unsupervised segmentation, through neural network techniques, of an optimized space in which to perform clustering. The effectiveness of the proposed technique is determined by the extent to which potential abnormalities can be extracted from corresponding breast MRI based on its analysis, this algorithm also proposes changes that could reduce this error, and help to give good results all around. Tests performed on both real and simulated MR images shows good result.
منابع مشابه
Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI
Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...
متن کاملBreast abnormalities segmentation using the wavelet transform coefficients aggregation
Introduction: Breast cancer is the most common cancer among women in the world. The automatic detection of masses in digital mammograms is a challenging task and a major step in the development of breast cancer CAD systems. In this study, we introduce a new method for automatic detection of suspicious mass candidate (SMC) regions in a mammogram. Methods: Mammography is widely used for the early...
متن کاملComputer-aided detection of breast lesions in DCE-MRI using region growing based on fuzzy C-means clustering and vesselness filter
A computer-aided detection (CAD) system is introduced in this paper for detection of breast lesions in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The proposed CAD system firstly compensates motion artifacts and segments the breast region. Then, the potential lesion voxels are detected and used as the initial seed points for the seeded region-growing algorithm. A new and rob...
متن کاملExtraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images
Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...
متن کاملA Hybrid Method for Mammography Mass Detection Based on Wavelet Transform
Introduction: Breast cancer is a leading cause of death among females throughout the world. Currently, radiologists are able to detect only 75% of breast cancer cases. Making use of computer-aided design (CAD) can play an important role in helping radiologists perform more accurate diagnoses. Material and Methods: Using our hybrid method, the background and the pectoral muscle...
متن کامل